CAPÍTULO 5: SISTEMAS DE MEDIDA

Propiedad Intelectual

El presente documento se encuentra depositado en el registro de Propiedad Intelectual de Digital Media Rights con ID de obra AAA-0181-02-AAA-012300

Fecha y hora de registro: 2013-09-26 17:23:46.0

Licencia de distribución: CC by-nc-sa

Queda prohibido el uso del presente documento y sus contenidos para fines que excedan los límites establecidos por la licencia de distribución.

Mas información en http://www.dmrights.com

LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Autor: Pedro Luis Suberviola Serrano

Revisor: Sergio Hernández

Ilustraciones: Banco de imágenes del INTEF más Wikipedia y producción propia

Índice

1. SISTEMA INTERNACIONAL DE UNIDADES

- 1.1. SISTEMA INTERNACIONAL DE UNIDADES
- 1.2. FL MFTRO.
- 1.3. EL LITRO.
- 1.4. UNIDADES DE MASA
- 2. MEDIDA DE ÁNGULOS
- 3. MEDIDA DEL TIEMPO
- 4. UNIDADES MONETARIAS

Resumen

Un accidente interespacial, la búsqueda infructuosa de un tesoro sumergido... todo debido a la confusión entre las unidades de medida. Por eso es importante saber si estamos usando nuestro Sistema Internacional de Unidades (SI), o si se emplean unidades anglosajonas.

En este capítulo vamos a revisar tus conocimientos del curso anterior sobre las unidades de medida del Sistema Internacional de Unidades (SI), (antiguamente Sistema Métrico Decimal), a hacer cambios entre unas unidades y otras. También revisaremos las llamadas unidades agrarias: área, hectárea...

Ampliaremos este conocimiento con la medida de ángulos y las unidades de tiempo, tan útiles, que usan un sistema distinto al decimal, el sistema hexagesimal.

Añadiremos las unidades monetarias que nos van a servir entre otras cosas para el cambio de divisas

1. SISTEMA INTERNACIONAL DE UNIDADES

Recuerda que:

En este apartado vamos a revisar tus conocimientos del curso anterior sobre el Sistema Internacional de Medidas.

Magnitud

Una **magnitud** es una característica de un cuerpo, sustancia o fenómeno físico que se puede medir y expresar cuantitativamente, es decir, mediante un número.

Una magnitud se mide comparándola con un patrón que tenga bien definida esa magnitud y observando el número de veces que lo contiene. A ese patrón le llamamos **unidad de medida**.

Una misma magnitud se puede expresar con distintas unidades de medida.

Ejemplo:

♣ La longitud es una magnitud y se puede expresar en kilómetros, metros, centímetros, millas, pulgadas,... Puedo decir que alguien mide 1,52 metros, 152 centímetros, 4,98 pies, 59,76 pulgadas,... la altura es la misma, pero está expresada en distintas unidades.

Observa que no se puede decir que alguien mide 1 longitud, 2 longitudes,... pues la longitud es la magnitud, no la unidad, que podría ser el centímetro.

Igual no se dice que *alguien pesa 1 masa, 2 masas,...* ya que masa es la magnitud, que se mide en kilogramos.

1.1. Sistema Internacional de Unidades (SI)

Para poder comparar el valor de varias magnitudes debemos utilizar una misma unidad de medida.

Ejemplo:

→ Si quiero comparar las medidas de una mesa que uso en clase con una mesa de mi casa, debo utilizar la misma unidad. Si una la mido en centímetros y la otra en pulgadas, no puedo compararlas.

Para facilitar el intercambio científico, cultural y comercial, en casi todos los países se ha adoptado el **Sistema Internacional de Unidades** (SI) como sistema de medidas.

Es el heredero del antiguo **Sistema Métrico Decimal** y por ello también se le conoce como **Sistema Métrico** o simplemente como **Sistema Internacional** (SI).

Algunas de las unidades básicas que utiliza para las distintas magnitudes son:

Longitud	Superficie	Volumen	Masa	Tiempo
El metro	El metro cuadrado	El metro cúbico	El kilogramo	El segundo

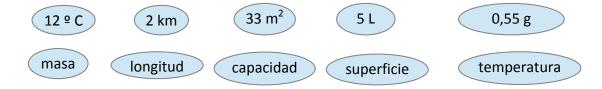
Observa que:

El segundo, que es una medida fundamental del Sistema Internacional de Unidades, como bien sabes, no es decimal, 100 segundos no son una hora ni un minuto. Sin embargo en el resto de los casos, para pasar de una unidad a otra que sea múltiplo o submúltiplo, hay que multiplicar por una potencia de diez. Por ello, en ocasiones, se habla del Sistema Métrico *Decimal*.

En general, los múltiplos y submúltiplos de la unidad principal se nombran añadiendo prefijos (kilo, centi,...). Lo estudiaremos con más detenimiento más adelante.

Recuerda: Existen unidades, como por ejemplo los pies, que usan en múltiplos y submúltiplos un sistema decimal, pero no forman parte del Sistema Internacional de Unidades. Mientras que otras, como el segundo, que si forman parte del Sistema Internacional de Unidades no usan un sistema decimal.

Nota curiosa:


Según la Física Clásica las magnitudes fundamentales de masa, tiempo y longitud son propiedades de los objetos, pero según la Teoría de la Relatividad ya NO son propiedades "reales" de los objetos. Al observar un objeto desde fuera, cuanta más velocidad lleve ese objeto más se achata la longitud, más se acelera el tiempo y más aumenta la masa del objeto. El tiempo es relativo, así como la longitud o la masa.

Las magnitudes fundamentales que usaremos son tres: masa (kg), tiempo (s) y longitud (m). Otras son magnitudes derivadas, como de superficie (metro cuadrado), de volumen (metro cúbico) o por ejemplo, la velocidad que se puede medir en kilómetros por hora (km/h).

Actividades propuestas

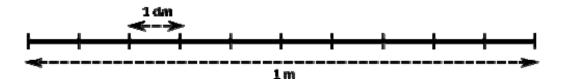
- 1. Clasifica como magnitudes o unidades de medida. Indica cuáles de las unidades de medida pertenecen al SI:
 - a) Centímetro cúbico
- b) Tiempo
- c) Hora
- d) Memoria de un ordenador

- e) Gramo
- f) Masa
- g) Longitud
- h) Kilómetros por hora
- 2. Investiga a qué magnitudes corresponden las siguientes unidades poco corrientes:
 - a) Área
- b) Herzio
- c) Yuan
- d) Grado Fahrenheit
- e) Año luz
- **3.** Indica al menos una unidad del Sistema Internacional de Unidades adecuada para expresar las siguientes magnitudes:
 - a) La edad de la Tierra
- b) El tamaño de un jardín
- c) La capacidad de un bidón
- d) La distancia entre Madrid y Valencia
- f) La masa de un armario
- e) Lo que tardas en hacer un problema
- 4. Copia en tu cuaderno y relaciona cada magnitud con su posible medida:

Matemáticas 1º de ESO. Capítulo 7: Sistemas de Medida www.apuntesmareaverde.org.es
LibrosMareaVerde.tk

1.2. El metro

Recuerda que:


Unidades de longitud

El **metro** es una unidad de medida de longitud y se representa por **m**.

Pertenece al Sistema Internacional de Unidades (SI).

Sus múltiplos y submúltiplos principales son:

Múltiplos			Unidad		Submúltiplos	
Kiló metro	Hectó metro	Decá metro	Metro	Decí metro	Centímetro	Milímetro
k m	h m	da m	m	d m	c m	m m
1.000 m	100 m	10 m	1 m	0,1 m	0,01 m	0,001 m

Un metro está dividido en 10 decímetros

Existen otros submúltiplos:

Micrómetro (μ m). 1 μ m = 0,001 mm = 0,000.001 m

Nanómetro o micra (**n**m). 1 nm = 0,001 μ m = 0,000.000.001 m

Ångström ($\mathring{\mathbf{A}}$). 1 Å = 0,1 nm = 0,000.000.000.1 m

Otras unidades de longitud, que no son múltiplos o submúltiplos del metro son:

Unidad astronómica (UA): Es la distancia media entre la Tierra y el Sol, y es igual a 150 millones de km.

Año luz: Es la distancia recorrida por un rayo de luz en un año y es igual a:

1 año luz = 63.240 UA = 9.460.000.000.000 km

Ejemplos:

- ♣ El átomo más pequeño, el de hidrógeno, tiene aproximadamente 1 Å de diámetro.
- Los chips electrónicos están compuestos de transistores de 22 nm de tamaño.
- La Vía Láctea tiene de radio 50.000 años luz.
- El diámetro de un cabello es de aproximadamente 0,1 mm
- Un espermatozoide mide 53 μm, un hematíe 7 μm.

Cambio de unidades

Para realizar cambios de unidades de longitud debemos multiplicar o dividir por diez tantas veces como sea necesario.

Esto lo hacemos desplazando la coma hacia la derecha (para multiplicar) o a la izquierda (para dividir) tantas veces como queramos multiplicar o dividir por diez.

Actividades resueltas

• Expresa en metros:

d)
$$34 \text{ cm} = 0.34 \text{ m}$$

Actividades propuestas

- 5. Si Ramón mide 1,65 metros y Jesús mide 164 centímetros: ¿Quién es más alto?
- 6. Contesta con una regla graduada:
 - a) Mide la longitud de tu cuaderno. ¿Cuánto mide?
 - b) Mide un lápiz. ¿Cuánto mide?
- 7. Averigua cuánto mide de largo tu habitación.
- 8. Expresa las siguientes longitudes en centímetros:
 - a) 54 dm
- b) 21,08 m
- c) 8,7 hm
- d) 327 mm
- 9. Expresa las siguientes longitudes en las unidades que se indican en cada caso:
- a) 8 m 1 mm en centímetros
- b) 3,5 km 27 dam en centímetros c) 13 km 21 mm en milímetros
- d) 7 hm 15 cm en centímetros
- e) 2 dam 5 dm en metros f) 0,6 m 340 mm en decímetros

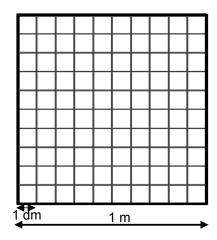
Unidades de superficie

Recuerda que:

El metro cuadrado es la unidad de medida de superficie y se representa por m².

Es una unidad derivada del metro. No es una unidad fundamental.

Sus múltiplos y submúltiplos principales son:


Múltiplos			Unidad		Submúltiplo	os
Kilómetro	Hectó metro	Decá metro	Metro	Decí metro	Centí metro	Milímetro
cuadrado	cuadrado	cuadrado	cuadrado	cuadrado	cuadrado	cuadrado
km²	h m ²	dam ²	m²	d m ²	c m ²	m m ²
1 000 000 m ²	10 000 m ²	100 m ²	1 m ²	0,01 m ²	0,000 1 m ²	0,000 001m ²

Comprobemos que en 1 m² hay 100 dm²:

Un metro cuadrado es la superficie que tiene un cuadrado de 1 m de lado.

Dividimos cada uno de sus lados en 10 segmentos iguales, que medirán por lo tanto 1 dm cada uno.

Unimos los extremos de los segmentos formando cuadrados. Obtenemos 100 cuadrados de 1 dm de lado. Es decir, en el metro cuadrado hay 100 de estos cuadrados, es decir, 100 dm².

Ejemplos:

- ♣ Un piso suele medir entre 60 m² y 110 m².
- ♣ Un campo de fútbol para partidos internacionales mide entre 64 dam² y 82,5 dam².
- ♣ La ciudad de Valladolid tiene una superficie de 197,91 km², la de Madrid 605,8 km².
- ♣ La provincia del estado español con mayor superficie es Badajoz, con 21.766 km², la menor Guipúzcoa con 1.980 km².
- ↓ La provincia de Madrid tiene 8.027 km² de superficie. Imagina un rectángulo de 100 km de ancho y 80 km de largo.
- ♣ El estado de la Unión Europea con mayor superficie es Francia, con 547.030 km².

Cambio de unidades

Para realizar cambios de unidades de **superficie** debemos multiplicar o dividir por **cien** tantas veces como sea necesario.

$$km^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} km^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} dam^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} m^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} dm^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} cm^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} mm^{2}$$

Esto lo hacemos desplazando la coma hacia la derecha (para multiplicar) o a la izquierda (para dividir) de dos en dos cifras.

Actividades resueltas

Expresa en metros cuadrados:

a) $0.743 \text{ km}^2 = 743.000 \text{ m}^2$

 $0.743 \text{ km}^2 = [6 \text{ posiciones a la derecha}] = 743.000 \text{ m}^2$

b) $95.400 \text{ mm}^2 = 0.0954 \text{ m}^2$

 $95.400 \text{ mm}^2 = [6 \text{ posiciones a la izquierda}] = 0.0954 \text{ m}^2$

c) $5.32 \text{ hm}^2 = 53.200 \text{ m}^2$

d) $37 \text{ cm}^2 = 0.0037 \text{ m}^2$

e) $82 \text{ km}^2 = 82.000.000 \text{ m}^2$

f) $4 \text{ km}^2 53 \text{ hm}^2 2 \text{ m}^2 = 4.530.002 \text{ m}^2$

g) $3 \text{ dam}^2 15 \text{ m}^2 23 \text{ dm}^2 = 315,23 \text{ m}^2$

Actividades propuestas

10. Observa la tabla anterior y calcula:

a) $35 \text{ dam}^2 = \underline{\qquad} \text{m}^2$ b) $67 \text{ m}^2 = \underline{\qquad} \text{mm}^2$ c) $5 \text{ km}^2 = \underline{\qquad} \text{m}^2$ d) $7 \text{ m}^2 = \underline{\qquad} \text{hm}^2$

11. Pasa 98 hm² 37 dam² a centímetros cuadrados.

Unidades agrarias

Son unidades que no pertenecen al Sistema Internacional pero se utilizan para medir superficies rurales, bosques, plantaciones,...

 $1 ha = 100 a = 100 dam^2 = 1 hm^2$ La **hectárea**

 $1 a = 100 m^2 = 1 dam^2$ Fl área

 $1 ca = 0.01 a = 1 m^2$ La **centiárea**

Es decir, para hacer la conversión entre unidades agrarias y su conversión con el Sistema Internacional podemos utilizar la siguiente regla:

Ejemplos:

- 🖶 Una **hectárea** es un cuadrado de 100 m de lado. Un campo de fútbol mide 62 áreas, aproximadamente media hectárea. Para hacernos una imagen mental, podemos pensar que dos campos de fútbol son más o menos una hectárea.
- 🖶 La superficie incendiada en España cada año es, en promedio, unas 125.000 ha. La provincia más pequeña es Guipúzcoa, con 1.980 km², es decir, 198.000 ha. Por lo tanto, el área incendiada cada año es aproximadamente el de esa provincia.

Actividades resueltas

• Expresa en hectáreas:

a)
$$5.7 \text{ km}^2 = 570 \text{ hm}^2 = 570 \text{ ha}$$

c)
$$200.000 \text{ dm}^2 = 0.2 \text{ hm}^2 = 0.2 \text{ ha}$$

d)
$$930 \text{ dam}^2 = 9.3 \text{ hm}^2 = 9.3 \text{ ha}$$

Actividades propuestas

12. Expresa las siguientes superficies en áreas:

- a) 1.678 ha
- b) 5 ha
- c) 8 ha 20 a
- d) 28.100 ca

13. La superficie de un campo de fútbol es de 7.140 metros cuadrados. Expresa esta medida en cada una de estas unidades:

a) Centímetros cuadrados b) Decámetros cuadrados c) Hectáreas

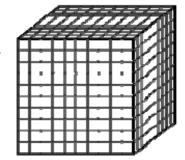
d) Áreas.

Unidades de volumen

El metro cúbico es la unidad de medida de volumen y se representa por m³.

Es una unidad derivada del metro.

Sus múltiplos y submúltiplos principales son:


Múltiplos			Unidad		Submúltipl	os
Kiló metro	Hectó metro	Decá metro	Metro	Decí metro	Centí metro	Milímetro
cúbico	cúbico	cúbico	cúbico	cúbico	cúbico	cúbico
k m ³	h m ³	dam ³	m³	d m ³	cm ³	m m ³
1 000 000 000 m ³	1 000 000 m ³	1 000 m ³	1 m ³	0,001 m ³	0,000 001 m ³	0,000 000 001 m ³

Comprobemos que en 1 m³ hay 1000 dm³:

Un metro cúbico es el volumen que tiene un cubo de 1 m de arista.

Dividimos cada uno de sus aristas en 10 segmentos iguales, que medirán por lo tanto 1 dm cada uno.

Cortamos el cubo paralelamente a las caras. Obtenemos 1000 cubos de 1 dm de arista. En el metro cúbico hay 1 000 de estos cúbicos, es decir, $1.000 \, dm^3$.

Ejemplo:

- ≠ El consumo de agua y de gas en las facturas se mide en m³. Una persona consume de media 4,5 m³ de agua al mes.
- 4 El tamaño de un embalse pueden ser 50 hm³ de capacidad.
- 🖶 Uno de los embalses de mayor capacidad en España es el de la Almendra, con 2,6 km³ de capacidad.
- 🖶 La capacidad total de los embalses de España es de 55 km³.

Cambio de unidades

Para realizar cambios de unidades de **volumen** debemos multiplicar o dividir por **mil** tantas veces como sea necesario.

$$km^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad hm^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad dam^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad m^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad dm^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad cm^{3} \quad \xrightarrow{\stackrel{\cdot 1000}{\longleftarrow}} \quad mm^{3}$$

Esto lo hacemos desplazando la coma hacia la derecha (para multiplicar) o a la izquierda (para dividir) de tres en tres cifras.

Actividades resueltas

Expresa en metros cúbicos:

- a) $0.743 \text{ km}^3 = 743\,000\,000 \text{ m}^3$
- b) $95 400 \text{ mm}^3 = 0,000 095 4 \text{ m}^3$
- c) $5,32 \text{ hm}^3 = 5320000 \text{ m}^3$
- d) $457 \text{ cm}^3 = 0,000 457 \text{ m}^3$
- e) $61 \text{ km}^3 = 61\ 000\ 000\ 000\ \text{m}^3$
- f) $3 \text{ km}^3 52 \text{ hm}^3 8 \text{ m}^3 = 3.052.000.008 \text{ m}^3$
- g) $9 \text{ dam}^3 6 \text{ m}^3 34 \text{ dm}^3 = 9006,034 \text{ m}^3$

Actividades propuestas

- **14.** Expresa en metros cúbicos 3,2 dam³ 5600 dm³.
- **15.** Expresa estos volúmenes en decámetros cúbicos:
 - a) 0,38 m³
- b) 81 dm³
- c) 1,23 hm³
- d) 52 m³

1.3. El litro

Recuerda que:

La "capacidad" es la misma magnitud que el "volumen", por tanto se mide la capacidad de un recipiente, (cuánto volumen le cabe) con el metro cúbico y sus derivados. El litro se utiliza por razones históricas, y no pertenece al Sistema Internacional de Unidades. Aunque nos conviene conocerlo si lo consideramos como una unidad de volumen "coloquial" utilizada normalmente para medir la capacidad de los recipientes. Un litro corresponde con un dm³, y se utilizan múltiplos de litro como si fuera una unidad más del SI, con múltiplos y divisores decimales.

El **volumen** es la cantidad de espacio que ocupa un cuerpo y **capacidad** es lo que cabe dentro de un recipiente.

Su unidad de medida es el litro y se representa por L.

Múltiplos			Unidad		Submúltiplos	
Kilo litro	Hectó litro	Deca litro	Litro	Decilitro	Centilitro	Mililitro
k L	hL	daL	L	dL	cL	mL
1000 L	100 L	10 L	1 L	0,1 L	0,01 L	0,001 L

Ejemplos:

- Una botella de agua grande tiene una capacidad de 1,5 L.
- ♣ Un depósito de gasóleo para una casa puede tener una capacidad de 4 hL.
- Una lata de refresco tiene una capacidad de 33 cL.
- ♣ Una dosis típica de jarabe suele ser de 5 mL.
- 🖶 En una ducha de cinco minutos se utilizan unos 90 L de agua.
- ♣ Como hemos visto, cuando medimos capacidades de agua grandes se utilizan unidades de volumen (m³, hm³, ...).

Cambio de unidades

Para realizar cambios de unidades de capacidad debemos multiplicar o dividir por diez tantas veces como sea necesario. Igual que con metros, pues la unidad no está elevada ni al cuadrado ni al cubo.

$$\mathsf{kL} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{hL} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{daL} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{L} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{dL} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{cL} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \mathsf{mL}$$

Esto lo hacemos desplazando la coma hacia la derecha (para multiplicar) o a la izquierda (para dividir) tantas veces como queramos multiplicar o dividir por diez.

Ejemplo:

- Expresa en litros:
 - a) 5,7 hL = 570 L

- b) 200 mL = 0,2 L
- c) 9,5 kL = 9500 L

- d) 0,0345 kL = 34,5 L
- e) 710 cL = 7,1 L
- f) 9,2 mL = 0,0092 L

Actividades propuestas

- 16. ¿Cuántos decilitros tiene un litro?
- 17. Expresa en hectolitros:
 - a) 34 L b) 1.232 cL c) 57 daL d) 107 hL

Relación entre litros y m³

Los litros se relacionan con las unidades de volumen porque 1 L equivale a 1 dm³. Por lo tanto:

Si lo añadimos al esquema de cambios de unidades de capacidad:

 m^3

 dm^3

cm³

Ejemplos:

- ♣ Un depósito de agua de 1 m³ tiene 1 kL de capacidad, es decir, 1.000 L, mil litros.
- 🖶 En los botellines de agua, dependiendo de la marca, se expresan la cantidad de agua en mL, cm³, cL o L. Por ejemplo: 50 cL, 1/3 L, 500 mL, 33 cL, 250 mL.
- Un litro de leche ocupa un volumen de 1 dm³.

Actividades resueltas

Expresa en litros:

a)
$$7.2 \text{ dm}^3 = 7.2 \text{ L}$$

Expresa en decímetros cúbicos:

a)
$$0,635 \text{ hL} = 63,5 \text{ dm}^3 = 63,5 \text{ dm}^3$$

b)
$$23 \text{ cL} = 0.23 \text{ L} = 0.23 \text{ dm}^3$$

c)
$$73.5 \text{ kL} = 73.500 \text{ L} = 73.500 \text{ dm}^3$$

d)
$$0.5 \text{ dL} = 0.05 \text{ L} = 0.05 \text{ dm}^3$$

Actividades propuestas

18. Ordena de menor a mayor estas medidas:

19. Calcula el volumen (en litros y en cm³) de una caja que mide 20 cm de ancho, 20 cm de largo y 5 cm de alto.

1.4. Unidades de masa

Recuerda que:

El **kilogramo** es la unidad de medida de masa y se representa por **kg**.

Pertenece al Sistema Internacional de Unidades (SI).

Sus múltiplos y submúltiplos principales son:

Unidad	Submúltiplos								
Kilo gramo	Hectogramo Decagramo		Gramo	Gramo Decigramo		Miligramo			
k g	hg	dag	g	d g	c g	m g			
1000 g	100 g	10 g	1 g	0,1 g	0,01 g	0,001 g			

	Unidad		
Tonelada métrica	Quintal métrico	Miriagramo	Kilo gramo
tm	qm	mag	k g
1000 kg	100 kg	10 kg	1 kg

La **tonelada** y el **quintal** no son múltiplos del gramo ni pertenecen al SI. En origen una tonelada eran 960 kg y corresponde a 20 quintales de 46 kg o 100 libras, pero cuando se impuso el SI continuaron usándose, aunque "redondeados" a 1000 kg y 100 kg. Estas nuevas unidades son la **tonelada métrica** (tm) y el **quintal métrico** (qm), que sí pertenecen al Sistema Universal de Unidades.

Nota:

¡La masa no es lo mismo que el peso!

Una bola de acero peso mucho en la Tierra, pero no pesa nada en el espacio, y aún así, si te la tiran con fuerza te sigue dando un buen golpe. La fuerza de ese golpe te dice que tiene mucha masa (gramos). La masa se conserva en el espacio porque es una verdadera magnitud, pero el peso es una fuerza debida a la gravedad de la Tierra. Solo en la Tierra la masa y el peso de una persona coinciden como cantidad, por eso es normal decir que alguien "pesa tantos kg" aunque no sea del todo correcto, se debería decir que "tiene una masa de 70 kg y, en la Tierra, pesa 70 kgf (kilo gramos fuerza)".

En los ejemplos siguientes usaremos kg como peso por seguir con la forma *coloquial* de hablar, pero deberíamos usar kgf o decir que "tiene una masa de 70 kg".

Cuando pedimos en la tienda un kilo de patatas, estrictamente, desde el punto de vista matemático, estamos diciendo mil patatas, puesto que el prefijo kilo significa mil.

No significa que esté mal decirlo, debemos distinguir distintos contextos y situaciones.

En la tienda podemos comprar un kilo de patatas, mientras que en clase de matemáticas diremos un kilogramo fuerza de patatas.

Ejemplos:

- ♣ Una persona adulta puede pesar 70 kg (bueno, deberíamos decir "tiene una masa de 70 kg" como ya comentamos antes).
- En un bocadillo se suelen poner unos 40 g de embutido.
- ♣ Para plantar trigo, se utilizan entre 60 kg y 250 kg de semilla por hectárea y se cosechan varias toneladas por hectárea.
- ♣ El peso de un coche vacío es de unos 1.200 kg.
- El peso máximo autorizado de un vehículo con dos ejes es de 18 t.
- ♣ Un elefante africano puede pesar hasta 7,5 t. Una ballena azul, 120 t.

Actividad resuelta

¿Pesa más un kilogramo de hierro que uno de paja?

La masa es igual, pero ambas están en la Tierra rodeadas de aire, e igual que ocurre si están rodeadas de agua, el hierro irá hacia abajo con más fuerza que la paja que "flota más" tanto en el agua como en el aire. Piénsalo así: ¿Que pesa más, un trozo de hierro de 100 kg o un globo aerostático de 100 kg que está flotando? Si el globo vuela, ¿es que no pesa?

Volvemos a la misma idea de antes. No debemos confundir el peso (que es una fuerza) con la masa.

Cambio de unidades

Para realizar cambios de unidades de masa debemos multiplicar o dividir por diez tantas veces como sea necesario.

$$\text{kg} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{hg} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{dag} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{g} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{dg} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{cg} \qquad \xrightarrow{\stackrel{\cdot 10}{\longleftarrow}} \quad \text{mg}$$

Esto lo hacemos desplazando la coma hacia la derecha (para multiplicar) o a la izquierda (para dividir) tantas veces como queramos multiplicar o dividir por diez.

Un litro de agua tiene de masa, casi de forma exacta 1 kg. Esta aproximación se puede realizar, de forma menos precisa, para otros líquidos.

Actividades resueltas

- **Expresa en gramos:**
 - a) 0.45 kg = 450 g
- b) 712 mg = 0,712 g
- c) 9.32 hg = 932 g

- d) 8,57 cg = 0,0857 g
- e) 0,031 kg = 31 g
- f) 56 kg 3 hg 7 g = 56307 g

- g) 7 dag 2 g 3 dg 5 mg = 72,305 g
- Expresa en kilogramos:
 - h) 8,2 tm = 8200 kg
- i) 340 g = 0.34 kg
- j) 2,4 qm = 240 kg

- k) 92 mag = 920 kg
- l) 678 hg = 67,8 kg
- m) 8900 dag = 89 kg
- ♣ Supongamos que hemos comprado 1 kg de alubias, 2,5 kg de fruta, 2 L de leche y dos botellas de 1,5 L de agua. Si queremos calcular el peso de la compra de forma aproximada, podemos cambiar los litros por kilogramos.

$$1 \text{ kg} + 2.5 \text{ kg} + 2 \text{ kg} + 2 \cdot 1.5 \text{ kg} = 8.5 \text{ kg}$$

Nuestra compra pesa aproximadamente 8,5 kg.

Actividades propuestas

- **20.** Expresa las siguientes cantidades en hectogramos:
 - a) 17 g
- b) 59 dag
- c) 73,5 kg
- d) 350 g

- **21.** Expresa en gramos las siguientes masas:
 - a) 3,6 dag
- b) 59 kg
- c) 740,5 kg 8,5 dag d) 3 dag 15,10 dg

- **22.** Expresa en kilogramos:
 - a) 5 tm 5 qm 2,5 mag b) 9,35 tm 750 dag
- c) 712 qm 459 hg
- d) 22 tm 3 mag 8 kg

- 23. Estima la masa de:
 - a) tu cuaderno
- b) tu bolígrafo
- c) tu cartera
- d) tu mesa

2. MEDIDA DE ÁNGULOS

Para medir ángulos utilizamos el llamado sistema sexagesimal. La unidad de medida es el grado **sexagesimal**. Se representa con el símbolo ° y se define como 1/360 de un ángulo completo.

1° = 1 / 360 parte de un ángulo completo

El grado sexagesimal tiene dos divisores:

Minuto 1 minuto = 1 ' = 1/60 parte de un grado

Segundo 1 segundo = 1 '' = 1 / 60 parte de un minuto

Las unidades de este sistema aumentan y disminuyen de 60 en 60, por eso el sistema se llama sexagesimal.

Si un ángulo viene expresado en dos o tres de estas unidades, se dice que está expresado en forma compleja. En la forma incompleja de la medida de un ángulo aparece una sola unidad.

El paso de una a otra forma se realiza mediante multiplicaciones o divisiones por 60, según haya que transformar una unidad de medida de ángulos en la unidad inmediata inferior o superior.

Recuerda estas relaciones:

1 ángulo completo = 360 °

1 ángulo llano = 180°

1 ángulo recto = 90°

= 60 minutos = 3600 segundos

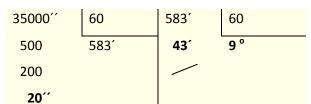
1 minuto = 60 segundos

Ejemplo:

$$A = 12^{\circ} 40' 32''$$

$$C = 120^{\circ} 23''$$

$$D = 35000'$$


$$E = 23^{\circ}$$

$$F = 34'$$

Ejemplo:

Ejemplo:

Pasaremos el ángulo D del ejemplo anterior a forma compleja:

Actividades propuestas

- **24.** Pasa a forma compleja los siguientes ángulos
 - 12500'' a)
- b) 83'
- 230" c)

17600 " d)

- 25. Pasa de forma incompleja a forma compleja
 - a) 12 ° 34′ 40′′ b)
- 13 ° 23′ 7 ′′
- 49 ° 56′ 32 ′′ c)
- 1°25′27′′ d)

Matemáticas 1º de ESO. Capítulo 7: Sistemas de Medida www.apuntesmareaverde.org.es LibrosMareaVerde.tk

26. Completa la tabla:

Expresión en segundos	Expresión en minutos y segundos	Expresión en grados, minutos y segundos
8465"		
	245′ 32″	
		31 ° 3′ 55 ′′

Suma y resta de ángulos en el sistema sexagesimal.

Para sumar ángulos expresados en el sistema sexagesimal, se colocan los sumandos haciendo coincidir grados, minutos y segundos, después se suman las cantidades correspondientes a cada unidad. Si los segundos sobrepasan 60, se transforman en minutos y se suman a los minutos resultantes de la primera fase de la suma. Si los minutos sobrepasan 60, los transformamos en grados y se suman a los grados anteriormente obtenidos.

Ejemplo:

$$24^{\circ} \quad 43' \quad 29'' \qquad 77'' \qquad \boxed{60} \qquad 73' \qquad \boxed{60}$$

$$+45^{\circ} \quad 29' \quad 48'' \qquad 17'' \qquad 1' \qquad 13' \qquad 1^{\circ}$$

$$69^{\circ} \quad 72' \quad 77'' \qquad N^{\circ} \text{ minutos} = 72' + 1' = 73' \qquad N^{\circ} \text{ de grados} = 69^{\circ} + 1^{\circ} = 70^{\circ}$$

$$24^{\circ} \quad 43' \quad 29'' \quad + \quad 45^{\circ} \quad 29' \quad 48'' \quad = \quad 69^{\circ} \quad 72' \quad 77'' \quad = \quad 69^{\circ} \quad 73' \quad 17'' \quad = \quad 70^{\circ} \quad 13' \quad 17''$$

Para restar datos de medida de ángulos, ángulos expresados en el sistema sexagesimal, se colocan el minuendo y el sustraendo haciendo coincidir grados, minutos y segundos, después restamos. Si en alguna columna el minuendo es menor que el sustraendo, se pasa una unidad inmediatamente superior a la que presente el problema para que la resta sea posible.

Ejemplo:

$$38^{\circ} 12'14'' - 15^{\circ} 15'15'' = 37^{\circ} 72'14'' - 15^{\circ} 15'15'' = 37^{\circ} 71'74'' - 15^{\circ} 15'' = 22^{\circ} 56' 59''$$

Actividades propuestas

27. Calcula:

3. MEDIDA DEL TIEMPO

¿Qué es un día? Es el tiempo que tarda la Tierra en dar una vuelta alrededor de su eje.

¿Y un año? Es el tiempo que tarda la Tierra en dar una vuelta alrededor del Sol.

Para conocer su duración hay que estudiar el movimiento del Sol. Los primeros pueblos que se ocuparon de la Astronomía fueron los babilonios y asirios.

Ellos usaban un sistema de numeración que no era decimal, sino sexagesimal. De ellos aún nos quedan las siguientes medidas del tiempo:

Un día tiene 24 horas.

Una hora tiene 60 minutos.

Un minuto tiene 60 segundos.

La unidad utilizada para medir la magnitud "tiempo" es el **segundo**, que se representa por la letra s, en minúscula y sin punto. Es una unidad del Sistema Internacional de Unidades (SI) pero **no** es decimal, es sexagesimal.

Pasar segundos a horas y minutos, o viceversa se hace de forma muy similar a como se pasan en las medidas de ángulos de segundos a grados y minutos que, para no repetir aprenderás en el capítulo 8 de "Figuras Planas" en el apartado 1.4.

Otras medidas del tiempo que conoces son:

La semana que tiene 7 días.

El mes, que tiene 30 días, o 31 días o 28 días el mes de febrero, salvo los años bisiestos que tiene 29.

Un año que tiene 12 meses.

Un año tiene 365 días excepto los años bisiestos que tienen 366 días.

La cronología permite datar los acontecimientos representándolos en una línea de tiempo.

Para medir el tiempo, en un principio, se empezó midiendo los movimientos de los astros, el movimiento aparente del Sol y de la Luna. Luego se utilizaron relojes como el reloj de sol, de arena o la clepsidra o reloj de agua. Ahora existen relojes y cronómetros muy perfeccionados.

Nuestro año comienza el 1 de enero, pero otros países utilizan otros calendarios, como el chino, el judío, o el musulmán. Al escribir esto estábamos en el año 2013, pero otros pueblos están en otros años muy diferentes. Infórmate sobre ese particular.

Actividades propuestas

- 28. ¿Cuántos segundos tiene una hora?
- 29. ¿Cuántas horas tiene una semana? ¿Cuántos minutos?
- 30. ¿Cuántas semanas tiene un año no bisiesto?

4. UNIDADES MONETARIAS

Las unidades monetarias diferentes a la que nosotros utilizamos se denominan divisas. Entre distintas monedas se establecen tipos de cambio que varían constantemente.

En la Unión Europea la unidad monetaria es el euro, se representa por €.

Para realizar los cambios, utilizaremos factores de conversión, redondeando el resultado si hiciera falta.

Actividades resueltas

Con la siguiente equivalencia de divisas:

Euros (€)	Libras (£)	Dólares (\$)	Soles (S/)	Bolivianos (Bs)	Yenes (¥)	Yuanes (¥)	Dirhams (مررد)(MAD)
1	0,86	1,3	3,6	9	131	8	11,1

Cambia 600 € a Libras y a Soles

0.86 £1 € es equivalente a 0,86 £. Multiplicando por 1 € se eliminan los € y queda arriba £

$$600 \in \frac{0.86 £}{1 €} = \frac{600 0.86}{1} \frac{€ £}{€} = 516 £$$

600 €
$$\frac{3,6 \text{ S/}}{1 \text{ €}} = \frac{600 \ 3,6}{1} \frac{\text{ € S/}}{\text{ €}} = 2.160 \text{ S/}$$

Equivalentemente para soles:

♣ b) Cambia 715 \$ y 16.000 ¥ (yuanes) a euros.

En este caso debo dividir entre \$ y ¥ respectivamente y el € debe quedar en el numerador

$$715\$ \frac{1€}{13\$} = \frac{715 \cdot 1}{13} \cdot \frac{\$ \cdot €}{\$} \approx 550€$$

16.000 ¥
$$\frac{1€}{8¥} = \frac{16.000 1}{8} \frac{¥ €}{¥} = 2.000 €$$

Actividades propuestas

- **31.** Con las equivalencias del cuadro anterior, cambia 1.200 € a libras, bolivianos, yenes y Dirhams.
- **32.** Con las equivalencias del cuadro anterior, cambia a euros las siguientes cantidades:
 - a) 390\$
- b) 4051,5
- c) 104.800 ¥ (yenes)
- d) 5.103 Bs
- 33. Jessica se quiere comprar una tablet. En España cuesta 350 €, en Estados Unidos 400 \$ y 60 \$ de transporte, en China 2.700 ¥ y 200 ¥ de transporte. ¿Dónde es más barato comprar la tablet?
- 34. Ramiro se comunica regularmente con amigos por internet: John, de Escocia; Irina, de Bolivia y Taiko de Japón. Quiere comprar una bici que cuesta 200 €. Les quiere decir a cada uno de sus amigos el precio en su moneda nacional. Realiza los cálculos.

CURIOSIDADES. REVISTA

Curiosidad respecto del metro:

¿Sabes que existe una longitud mínima en la naturaleza y que nada puede medir menos que ella?

Se llama la longitud de Planck y es muy pequeña, del orden de 1,6 · 10^-35 m, es decir, i0 coma y luego 34 ceros y después un 16 metros!

La primera definición de kilogramo se decidió durante Revolución Francesa especificaba que era la masa de un dm³ (un litro) de agua destilada al nivel del mar y 3,98 grados centígrados.

Hoy se define como la masa que tiene el prototipo internacional, compuesto de una aleación de platino e iridio que se guarda en la Oficina Internacional de Pesas y Medidas.

Otra cosa respecto del tiempo y los segundos:

Por razones históricas, para tiempos de un segundo o más, se usan minutos y horas, pero para menos de un segundo, como históricamente nunca se han podido medir, no existían unidades y se usó el sistema decimal, por eso se habla de décimas o milésimas de segundo, pero nunca de un "kilosegundo".

Tirando millas

La milla náutica (1852 metros) es distinta de la milla terrestre (1 609 metros), porque la velocidad en los barcos se mide en "nudos". Para medir la velocidad se tiraba una cuerda especial con muchos nudos por detrás del barco, y se miraba cuántos se quedaban flotando: el número de nudos que flotan indica la velocidad. Una milla náutica se definió como la distancia que navega un barco a una velocidad de un nudo durante una hora, por eso no coincide con la milla terrestre.

RESUMEN

Magnitud	Una magnitud se puede medir en distintas unidades de medida .
La distancia (magnitud) se puede medir en metros, centímetros, kilómetros, (distintas unidades de medida)
Longitud: metro	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0,32 km = 320 m = 32 000 cm 3.400 mm = 34 dm = 0,34 dam
Superficie: metro cuadrado	$km^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} km^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} dam^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} m^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} dm^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} cm^{2} \xrightarrow{\begin{array}{c} \cdot 100 \\ \cdot :100 \end{array}} mm^{2}$
0,001	$4 \text{ km}^2 = 0.14 \text{ hm}^2 = 14 \text{ dam}^2$ $23.000 \text{ mm}^2 = 230 \text{ cm}^2 = 2.3 \text{ dm}^2$
U. agrarias	1 ha = 1 hm ² 1 a = 1 dam ² 1 ca = 1 m ²
5 km²	$= 500 \text{ hm}^2 = 500 \text{ ha}$ $13.000 \text{ m}^2 = 13.000 \text{ ca} = 1,3 \text{ ha}$
Volumen: metro cúbico	km^3 $\xrightarrow{\cdot 1000}$ km^3 mm^3
3,2	$2.800 \text{ mm}^3 = 3.200 \text{ dam}^3 = 3.200 000 \text{ m}^3$ $2.800 \text{ mm}^3 = 28 \text{ cm}^3 = 0,002.8 \text{ dm}^3$
El litro	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3,7 kl	. = 37 hL = 370 daL = 3.700 L 85 mL = 8,5 cL = 0,85 dL = 0,085 L
Litros y m ³	$1 \text{ kL} = 1 \text{ m}^3$ $1 \text{ L} = 1 \text{ dm}^3$ $1 \text{ mL} = 1 \text{ cm}^3$
4,5 cl	$a = 45 \text{ mL} = 45 \text{ cm}^3$ $a = 45 \text{ mL} = 300 \text{ L} = 300 \text{ dm}^3$
Masa: kilogramo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2300	kg = 2,3 t
Medida de ángulos	Un grado = $1^\circ = 1 / 360$ parte de un ángulo completo. <i>Minuto:</i> 1 minuto = $1' = 1/60$ parte de un grado. <i>Segundo:</i> 1 segundo = $1'' = 1/60$ parte de un minuto
Unidades de tiempo	Un día e s el tiempo que tarda la Tierra en dar una vuelta alrededor de su eje. Un año e s el tiempo que tarda la Tierra en dar una vuelta alrededor del Sol. Un día tiene 24 horas . Una hora tiene 60 minutos . Un minuto tiene 60 segundos
Unidades monetarias	1 € = 0,86 £ = 9 Bs = (varía constantemente)
	$200 € = 200 € \frac{0.86£}{1€} = \frac{200 0.86}{1} \frac{€£}{€} = 172£$ 1.800 Bs = 200 €

d) 67,914 km e) 0,82 dam

EJERCICIOS Y PROBLEMAS

Unidades de longitud

c) 5148 m

2.	Completa con el número o unid	ad correspondiente:							
	a) 50 m = hm = 5000 _		b) 300 hm = 30	=	m				
	c) dm = m = 230			=	dm				
3.	Ordena de menor a mayor:	2,7 m; 30 cm; 0,005	km; 2600 mm; 0,024	hm; 26 dm.					
4. Calcula la longitud que falta o sobra para tener a 1 m:									
	a) 27 cm b) 300 mm + 25 cm	c) 0,00034 km + 0,2	2 dam d) 0, 3 m + 2	27 cm + 120 mm	l				
5.	Unos amigos están planeando distancia a recorrer es de unos cada hora. Si piensan andar 6 h	400 km. Ellos calcula	n que a un paso cóm	odo pueden and	•				
6.	Rebeca y su compañera de clas cm. ¿Cuál es el grosor de un fol	·		•	lios mide 6				
7.	Un parque rectangular mide 10 vueltas al parque debe de dar?	00 m de largo y 75 r	n de ancho. Juan qu	iere correr 5 km	n. ¿Cuántas				
8.	Expresa en UA:								
	a) 38.000 km b) 8.0	00 m c) un millón	de micras d) de	os millones de m	netros				
		Unidades de s	uperficie						
9.	Completa las siguientes igualda	des:							
	a) 3,5 dam ² = m ² =	dm ² b) 0,0	$08 \text{ km}^2 = \underline{\qquad} \text{m}^2$	= cm ²					
	c) 32 cm ² = dm ² =	_ dam² d) 60	$175 \text{ m}^2 = \underline{\qquad} \text{ dm}^2 =$	hm ²					
10	Expresa las siguientes superficio	es en las unidades qu	e se indican en cada o	caso:					
	a) 3 m ² 2 cm ² 5 mm ² en decíme	tros cuadrados	b) 6 dam² 2 dm² er	n metros cuadrad	dos				
	c) 9,3 hm² 5 m² 6 cm² en decám	netros cuadrados	d) 7 dm² 5 dam² er	n milímetros cua	drados				
11.	Dibuja en tu cuaderno el conto	no de tu mano.							
	a) Recorta después un cuadra de tu mano.	do de 1 cm de lado y	estima, en centímeti	ros cuadrados, la	superficie				
	b) Si utilizas un papel normal	de 60 g/m ² , y dibu	jas tu mano como e	n el ejercicio ar	nterior y lo				

12. La superficie de China es de 9560000 km². ¿Cuántas ha tiene?

mide en cm²?

1. Descompón en sus distintas unidades:

b) 415,95 mm

a) 3945,67 cm

recortas, al pesar el papel con un peso muy preciso, obtienes de nuevo la superficie de la mano. (¡Antes de los ordenadores se calculaban así, con papel y tijeras, algunas superficies!). ¿Cuánto

- **13.** Expresa en hectáreas:
- a) 3,2 km² b) 1.000 ca c) 600.000 dam² d) 824 m² e) 67 a

- f) 200 mm².

- 14. Expresa las siguientes superficies en áreas:
 - a) 800 ha
- b) 261 ca
- c) 3 ha 3 a 3ca
- d) 37 m^2 .
- 15. El padre de Juan guiere comprar un terreno de 7,3 ha a 3,2 € cada m². ¿Cuánto le va a costar?

Unidades de volumen y de capacidad

- 16. Piensa en un cubo de lado una unidad. Piensa ahora en un cubo del doble de lado. ¿Cuántos cubitos de los primeros son necesarios para obtener ese cubo?
- 17. Expresa en metros cúbicos: 28,7 hm³ 5 m³ 2.800 dam³ 45 dm³.
- **18.** Expresa en litros:
 - a) 8,1 hL
- b) 451 mL
- c) 2,3 kL
- d) 0,528 kL e) 6,25 cL f) 7,2 mL

- **19.** Completa las siguientes igualdades:
- a) $2 \text{ m}^3 = L$ b) $33 \text{ cL} = \text{dm}^3$ c) $500 \text{ mm}^3 = \text{mL}$

- d) 230 mL = ____ dm³ e) 0,02 hm³ = ___ L f) 0,016 hL = ___ m³ g) 0,35 dm³ = ___ mL h) 230 cL = ___ cm³ i) 0,25 hm³ = ___ kL

- **20.** En una urbanización se recoge cada semana 27 m³ de residuos sólidos. Si viven 42 familias, ¿cuántos litros estimas que produce cada familia al día?

Unidades de masa

- 21. ¿Qué tiene más masa, un kg de papel o un kg de plomo?
- 22. Expresa en gramos las siguientes masas:
 - a) 2,7 dag
- b) 51,3 kg
- c) 35,7 kg 8,6 dag d) 3 dag 5 g 26,29 dg
- 23. Copia en tu cuaderno y completa:

a)
$$1 g = ... dg = ... cg = ... mg = ... da$$

a)
$$1 g = ... dg = ... cg = ... mg = ... dag$$

b) $1 kg = ... hg = ... dag = ... g = ... cg = ... mg$
c) $1 tm = ... kg = ... g = ... hg = ... dag$
d) $1 qm = ... kg = ... g = ... tm = ... hg = ... cg$

24. Copia en tu cuaderno la tabla siguiente y complétala:

	kg	hg	dag	g	dg	cg	mg
0,943 hg							
75282,9 dg							
64,92 kg							
4375 dag							
369266 cg							

25. La densidad se define como el cociente entre la masa y el volumen. El oro tiene una densidad de 19,3 y la plata de 10,5. Dos pulseras de igual masa, una de plata y otra de oro, ¿Cuál tendrá mayor volumen?

Medida de ángulos

26. Un ángulo mide la quinta parte de un recto. Expresa esta medida en grados, minutos y segundos.

27. Calcula :

a) $36^{\circ} 57' 37'' + 45^{\circ} 18' 54''$

b) 46° 37′ 35′′+ 82° 32′ 41′′ + 43° 5′′

c) $26^{\circ} 34' + 84^{\circ} 21'' + 81^{\circ} 39' 49''$

d) 56° 54′ 56′′ – 23° 59′ 96′′

e) 78°5′34′′-26°5′47''

f) 44° 43′ 2′′ – 26° 47′ 31′′

28. La suma de dos ángulos es 236° 57′ 46″. Si uno de ellos mide 68° 57′ 58″, ¿cuánto mide el otro?

Unidades de tiempo

- **29.** Joaquín va cada día a la escuela y tarda 15 minutos en el trayecto. Si el curso tiene 50 semanas y va de lunes a viernes, ¿cuánto tiempo gasta en un año en ese trayecto? Estima el tiempo que tú utilizas.
- **30.** Si duermes 8 horas al día, ¿cuántas horas has dormido en una semana? ¿Y en un año? Esas horas, ¿cuántos días son?
- **31.** Enrique va cada día a la escuela y tarda 20 minutos en el trayecto. Si el curso tiene 30 semanas y va de lunes a viernes, ¿cuántos segundos gasta en un año en ese trayecto? Estima el tiempo que tu utilizas en horas.
- **32.** Si duermes 8 horas al día, ¿cuántos minutos has dormido en una semana?, ¿y cuántos segundos? ¿Cuántos minutos en un año? ¿Y segundos?
- **33.** Siete guardas de seguridad deben repartirse por igual un servicio de vigilancia de 24 horas. Expresa en horas y minutos el tiempo que debe permanecer vigilando cada uno de ellos

Unidades monetarias

34. Con la siguiente tabla de equivalencias, cambia dos mil euros a dólares, libras, yuanes y soles.

Euros (€)	Libras (£)	Dólares (\$)	Soles (S/)	Bolivianos (Bs)	Yenes (¥)	Yuanes (¥)	Dírhams (MAD)
1	0,86	1,3	3,6	9	131	8	11,1

- **35.** Sara tiene amigos por todas partes. Ha comprado un ordenador que cuesta 400 €. Les quiere decir a sus amigos el precio en su moneda nacional. A) ¿Qué diría al de Japón? B) ¿Y al de Marruecos? C) ¿Y al del Reino Unido? Realiza los cálculos.
- **36.** Con las equivalencias del cuadro adjunto, cambia a euros las siguientes cantidades:

Euros (€)	Libras (£)	Dólares (\$)	Soles (S/)	Bolivianos (Bs)	Yenes (¥)	Yuanes (¥)	Dírhams ()
1	0,86	1,3	3,6	9	131	8	11,1	

a) 4025 Dólares b) 5162 Libras

c) 215,925 ¥ (yenes) d) 6.214 Bs

37. Pedro se quiere comprar un móvil que en España cuesta 500 €, en Estados Unidos 500 \$ y 50 \$ por el transporte, en China 3900 ¥ y 150 ¥ de transporte. ¿Dónde es más barato comprar ese móvil?

AUTOEVALUACIÓN

1. Un cubo de 3 cm de lado, ¿qué volumen tiene?

	a) 9 cm ³	b) 0,27 dm ³	c) 0,003 m ³	d) 27 cm ³ .				
2.	De las siguientes medidas, ¿cuál es la mayor?							
	a) 5,78 daL	b) 578 L	c) 5,78 kL	d) 0,578 hL.				
3.	El resultado de sumar 0,07 kg + 0,62 dag + 9,3 hg es:							
	a) 1000 g	b) 1 kg 62 g	c) 10 hg 62 g	d) 1006,2 g.				
4.	La medida más adecuada para expresar el volumen del contenido de una taza es:							
	a) 2 L	b) 2 cL	c) 200 cm ³	d) 2000 mL				
5.		de un viaje de Estados en un nuevo viaje a Pe		en metálico. Los cambia tendrá?	a euros y éstos los			
	a) 3042 S/	b) 1800 S/	c) 235 S/	d) 140 S/				
6.	Una jarra de 2 litr	as 3/4 partes de la jarra, d	cuánto pesa?					
	a) 1500 g	b) 1,7 kg	c) 16 hg	d) 10,7 kg				
7.	El número de segundos de una semana es:							
	a) 25200 s	b) 604800 s	c) 602520 s	d) 10080 s				
8.	El número de segundos de un día es:							
	a) 1440 s	b) 85931 s	c) 8	86400 s	d) 10080 s			
9.	Transforma a segundos: 2 grados, 45 minutos y 3 segundos.							
	a) 9903 s	b) 2070 s	c) 99030 s	d) 10303 s				
10	. Juan ha cambiad han dado?	o mil euros a dólares,	, estando el cambi	o a 1,31 dólar el euro, ¿o	cuántos dólares le			
	a) 131 \$ b) 1310 \$		c) 7	763 \$	d) 1257 \$			